Mathematical Theory of Finite Elements

Wykładowca: Prof. Leszek Demkowicz

W dniach 25‐29 czerwca 2018 na Wydziale Inżynierii Lądowej Politechniki Krakowskiej Profesor Leszek Demkowicz z University of Texas at Austin przeprowadzi kurs Mathematical Theory of Finite Elements (A crash course for engineers) w ramach Studiów Doktoranckich WIL PK. W imieniu organizatorów kursu i Profesora Demkowicza serdecznie zapraszamy wszystkich zainteresowanych tą tematyką członków PTMKM do nieodpłatnego uczestnictwa.



We review fundamentals of Galerkin and conforming Finite Element (FE) methods using the model diffusion-convection-reaction problem. We discuss the possibility of different variational formulations leading to different energy spaces and corresponding conforming elements. The course is focusing on the famous inf-sup stability condition and the concept of discrete stability. We review the classical results of Babu ́ska, Mikhlin and Brezzi, and finish the exposition with fundamentals of the Discontinuous Petrov Galerkin (DPG) method. The week-long course consists of three 1.5 hour lectures per day accompanied with a one hour afternoon Q/A discussion session.

Administrative details

  • Place: Department of Civil Engineering, Cracow University of Technology 24 Warszawska Street, Cracow, Poland
  • Dates: June 25-29, 2018.
  • All lectures will be given in English. The syllabus is attached.
  • There is no fee for participation in the course. This is an obligatory course for the doctoral students at the Department of Civil Engineering of Cracow University of Technology.
  • The participants should register by e-mail to, by June 11, 2018.
  • All participants are kindly requested to make their own travel and accommodation arrangements.

Program kursu

Day 1
1. Classical calculus of variations. Concept of a variational formulation.
2. Diffusion-convection-reaction model problem. Different variational formulations.
3. Distributional derivatives and different energy spaces.
Day 2
1. Abstract framework: vector space, linear and bilinear forms, dual space.
2. Galerkin and Riesz methods.
3. Exact sequence elements.
Day 3:
1. Banach Closed Range, Babuška-Nečas, and Babuška Theorems.
2. Coercivity. Lax-Milgram Theorem and Cea’s Lemma.
3. Well posedness of the variational formulations for the model problem.
Day 4:
1. Mikhlin’s theory of asymptotic stability and convergence.
2. Brezzi’s theory of mixed problems.
3. Concept of optimal test functions.
Day 5:
1. Breaking test spaces and bilinear forms.
2. Fundamentals of the Discontinuous Petrov-Galerkin (DPG) Method.
3. Current research on the DPG method.

pobierz program